Measurements of cross sections for the fusion-evaporation reactions 244 Pu(48 Ca,xn) ${}^{292-x}$ 114 and 245 Cm(48 Ca,xn) ${}^{293-x}$ 116

Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov,

G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov,

G. V. Buklanov, K. Subotic, V. I. Zagrebaev, and M. G. Itkis

Joint Institute for Nuclear Research, 141980 Dubna, Russian Federation

J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, and R. W. Lougheed University of California, Lawrence Livermore National Laboratory, Livermore, California 94551, USA (Received 1 December 2003; published 17 May 2004)

We have studied the excitation functions of the reactions 244 Pu(48 Ca,*xn*). Maximum cross sections for the evaporation of 3–5 neutrons in the complete-fusion reaction 244 Pu+ 48 Ca were measured to be $\sigma_{3n}=2$ pb, $\sigma_{4n}=5$ pb, and $\sigma_{5n}=1$ pb. The decay properties of 3*n*-evaporation product 289 114, in the decay chains observed at low 48 Ca energy coincide well with those previously observed in the 244 Pu+ 48 Ca and 248 Cm+ 48 Ca reactions and assigned to 288 114. Two isotopes of element 114 and their descendant nuclei were identified for the first time at higher bombarding energies: 288 114 ($E_{\alpha}=9.95$ MeV, $T_{1/2}=0.6$ s) and 287 114 ($E_{\alpha}=10.04$ MeV, $T_{1/2}=1$ s). We also report on the observation of new isotopes of element 116, $^{290.291}$ 116, produced in the 245 Cm + 48 Ca reaction with cross sections of about 1 pb. A discussion of self-consistent interpretations of all observed decay chains originating at Z=118, 116, and 114 is presented.

DOI: 10.1103/PhysRevC.69.054607

PACS number(s): 25.70.Gh, 23.60.+e, 25.85.Ca, 27.90.+b

I. INTRODUCTION

In previous experiments in which superheavy nuclei close to the predicted neutron magic number N=184 were synthesized, we used the complete-fusion reactions of target and projectile nuclei having the largest available neutron excess: $^{244}Pu+^{48}Ca$ [1], $^{248}Cm+^{48}Ca$ [2], and $^{249}Cf+^{48}Ca$ [3]. In all of these cases, the observed α -decay chains of parent isotopes of elements 114, 116, and 118 were terminated by the spontaneous fission (SF) of previously unknown descendant nuclei with Z=110 [1,2] or 114 [3]. Because of the lack of available target and projectile reaction combinations, these unknown descendant nuclei cannot be produced as a primary reaction product. Thus the method of genetic correlations to known nuclei for the identification of the parent nuclide (see, e.g., review [4] and references therein) has limited application in this region of nuclei.

In these experiments, we identified masses of evaporation residues (ER's) using the characteristic dependence of their production cross sections on the excitation energy of the compound nucleus (thus defining the number of emitted neutrons) and from cross bombardments, i.e., varying mass number of the projectile or target nuclei which changes the relative yields of the *xn*-evaporation channels. Both of these methods were successfully used in previous experiments for the identification of unknown artificial nuclei (see [5] and references therein), particularly those with short half-lives for decay by SF.

We present the results of excitation-function measurements for the $^{244}Pu + ^{48}Ca$ fusion-evaporation reactions. We also report on the synthesis of new isotopes of element 116 in the $^{245}Cm + ^{48}Ca$ reaction.

II. EXPERIMENTAL TECHNIQUE

The ⁴⁸Ca ion beam was accelerated by the U400 cyclotron at the Flerov Laboratory of Nuclear Reactions (FLNR). The typical beam intensity at the target was 1.2 p μ A. The 32-cm² rotating targets consisted of the enriched isotopes ²⁴⁴Pu (98.6%) and ²⁴⁵Cm (98.7%) deposited as PuO₂ and CmO₂ onto 1.5- μ m Ti foils to thicknesses of about 0.38 mg cm⁻² and 0.35 mg cm⁻², respectively.

The ER's recoiling from the target were separated in flight from ⁴⁸Ca beam ions, scattered particles and transfer-reaction products by the Dubna Gas-filled Recoil Separator [6]. The transmission efficiency of the separator for Z=114 and 116 nuclei was estimated to be about 35-40% [6]; the separator efficiency is slowly changing as a function of mass and recoil energy over the range studied in these experiments.

Evaporation recoils passed through a time-of-flight system (TOF) and were implanted in a 4×12 cm² semiconductor detector array with 12 vertical position-sensitive strips, located in the separator's focal plane. This detector was surrounded by eight 4×4 cm² side detectors without position sensitivity, forming a box of detectors open from the front (beam) side. The position-averaged detection efficiency for α -decays of implanted nuclei was 87% of 4π . The detection system was tested by registering the recoil nuclei and decays (α or SF) of the known isotopes of No and Th, as well as their descendants, produced in the reactions 206 Pb(48 Ca,xn) and ^{nat}Yb(⁴⁸Ca, xn). The energy resolution for α particles absorbed in the focal-plane detector was 60-90 keV. The α -particles that escaped the focal-plane detector at different angles and registered in a side detector had an energy resolution of the summed signals of 140-200 keV. The FWHM position resolutions of the signals of correlated decays of

TABLE I. Reaction-specific lab-frame beam energies in the middle of the target layers, excitation energies [7] and beam doses for the given reactions.

Reaction	E_{beam} MeV	E^* MeV	Beam dose	Reference
²⁴⁴ Pu+ ⁴⁸ Ca	231	29.8-32.9	4.6×10^{18}	[1]
	236	32.9-37.4	1.5×10^{19}	[1]
	243	38.9-43.0	4.0×10^{18}	this work
	250	44.9-49.0	3.1×10^{18}	this work
	257	50.4-54.7	2.9×10^{18}	this work
²⁴⁵ Cm+ ⁴⁸ Ca	243	30.9-35.0	1.2×10^{19}	this work

nuclei implanted in the detectors were 0.8-1.3 mm for ER- α signals and 0.5–0.8 mm for ER-SF signals. As it can be seen from the data presented below, all the correlated events observed in these experiments were registered with position deviations corresponding to the given position resolutions except for two SF events. However, both these SF events were detected in beam-off period and the probability of observing them as random events is negligibly low. Fission fragments from ²⁵²No implants produced in the ²⁰⁶Pb+⁴⁸Ca reaction were used for an approximate fission-energy calibration. The measured fragment energies were not corrected for the pulse-height defect of the detectors, or for energy loss in the detectors' entrance windows, dead layers, and the pentane gas filling the detection system. The mean sum energy loss of fission fragments from the decay of ²⁵²No was about 20 MeV.

III. RESULTS

A. Excitation functions of ER's produced in ²⁴⁴Pu+⁴⁸Ca reaction

In this series of experiments, we chose bombarding energies for the ⁴⁸Ca ions that were greater than what had been studied previously [1]. Table I summarizes the lab-frame beam energies in the middle of the target layers, excitation energy ranges [7] and beam doses for the experiments studied. The systematic uncertainty in the beam energy is about 1 MeV. With the beam energy resolution, the small variation of the beam energy during irradiation, and the energy loss in the target, we expected the resulting compound nucleus ²⁹²114 to have excitation-energy ranges of 3.1 to 4.5 MeV. In our previous experiments performed in the years 1998– 1999 [1], a ²⁴⁴Pu target was bombarded with a similar beam dose at lower excitation energies (see Table I).

To detect these decay sequences in low background conditions, we employed a special measurement mode [2,3]. The beam was switched off after a recoil signal was detected with parameters of implantation energy and TOF expected for Z=114 evaporation residues, followed by an α -like signal with an energy of 9.66 MeV $\leq E_{\alpha} \leq 10.08$ MeV, in the same strip, within a 1.4–1.9 mm wide position window and a time interval of 10 s. The duration of the pause was determined from the observed pattern of out-of-beam α decays and varied from 3 to 12 min. Thus, all the expected sequential decays of the daughter nuclides with $Z \leq 112$ should be observed in the absence of beam-associated background.

The measured parameters of the decay chains observed at the three bombarding energies, namely detected energies of events E, positions of the ER's with respect to the top of the strip P_{ER} , difference in vertical positions relative to the ER δP , time intervals δt between detected events, and strip numbers are shown in Table II. At 243 MeV, we observed two decay chains (see the first two rows of Table II), each consisting of two consecutive α decays terminated by SF. The assignment of the event with $E_{\alpha} = 9.9 \pm 0.9$ MeV to the ²⁸⁹114 in the second decay chain is rather tentative because its registration probability in 6.3 s time interval as a random signal is about 40% (average counting rate of such events by the whole side detector array was about 4.5 min^{-1}). The same values for three other similar events (rows 3, 5, and 12) are about 18%, 2%, and 6%, respectively. However, the detection probability of this chain (ER- α_2 -SF) caused by unrelated signals is quite low $P_{\rm err} < 5 \times 10^{-4}$. The assignment of the side-only α decay of ²⁸⁹114 for rows 2 and 3 is not as strong as a chain with a full energy alpha signal, but it cannot be excluded. Identical decay chains were previously identified in the same reaction at the lower energy of 236 MeV (two events) [1] and also detected after the α decay of the parent nuclei in the ${}^{248}Cm + {}^{48}Ca$ reaction (three events) [2]. One more event of this type was detected at 250 MeV. At 257 MeV, no such events were found. Thus, this activity was observed in the ⁴⁸Ca energy interval of 236–250 MeV (E^* =35-47 MeV). The time intervals between the implantation of the mother nuclei in the detectors and the SF of the granddaughter isotopes varied from one-half minute to three minutes.

In addition to these chains at 243 MeV, we found seven similar decay chains that did not resemble those previously observed in the ²⁴⁴Pu+⁴⁸Ca and ²⁴⁸Cm+⁴⁸Ca reactions at lower compound nucleus excitation energies [1,2]. These decay chains consisted of a single α decay followed by the SF decay of the daughter nucleus, both detected within one second of the ER implantation. Four more decay chains of this type were observed at 250 MeV and one additional chain was observed at 257 MeV. These nuclei were also observed in the narrow energy interval of 243–257 MeV (E^* =41–53 MeV).

All of the events of this type of decay, observed at the various ⁴⁸Ca energies, are presented in the second section of Table II. The parent nuclei in these chains emit an α particle with an energy of 9.95 MeV in a short time following the ER implantation ($T_{\alpha} \sim 0.6$ s). The daughter nuclei undergo SF decay with a half-life of ~0.1 s.

The excitation functions for producing various nuclei in the ²⁴⁴Pu+⁴⁸Ca are shown in Fig. 1. They correspond well with what we expect for the indicated *xn*-evaporation channels [5]. As one can see from Fig. 1, the excitation functions of the nuclei that undergo sequential decays (α - α -SF and α -SF), overlap and their maxima are located at E^* ~40–43 MeV. The spectra of α particles and pairs of SF fragments observed in these chains are given in Fig. 2 together with the data from the reaction ²⁴⁸Cm+⁴⁸Ca [2]. In both cases, the radioactive decay of the observed nuclei is characterized by a strictly defined α -transition energy. The

							244	Pu+ ⁴⁸ Ca							
		²⁸⁹ 1	14		²⁸⁹ 114			²⁸⁵ 112			²⁸¹ 110				
Strip 12	E _L (MeV) 243	E _{ER} (MeV) 6.1	P _{ER} (mm) 26.2	$\delta t_{\text{ER-}\alpha}$ (s) 0.112	E_{α} (MeV) 9.80(7)	$\delta P_{\text{ER-}\alpha}$ (mm) -0.7	$\delta t_{\alpha-\alpha}$ (s) 14.80	E _α (MeV) 9.16(7)	$\delta P_{\text{ER-}\alpha}$ (mm) -1.0	$\frac{\partial t_{\alpha-SF}}{(s)}$ 9.892	E _{SF} (MeV) 133	$\delta P_{\text{ER-SF}}$ (mm) -0.5			
1 8	243 250	9.4 9.0 ²⁸⁸ 1	19.1 24.3 14	6.292 5.718	$9.9(6)^{a} 9.9(3)^{a} ^{288}114$		27.94 20.61	9.17(7) 9.18(8) ²⁸⁴ 112	+1.2 +0.6	40.91 4.679	202 ^d 138	$-0.7 \\ -0.1$			
Strip 11	E _L (MeV) 243	E _{ER} (MeV) 7.7	P _{ER} (mm) 17.1	$\delta t_{\text{ER-}\alpha}$ (s) 0.826	E _α (MeV) 9.98(8)	$\delta P_{\text{ER-}\alpha}$ (mm) +0.3	δt _{α-SF} (s) 0.177	E _{SF} (MeV) 229	$\delta P_{\text{ER-SF}}$ (mm) 0.0						
5 2 4	243 243 243	11.9 9.8 12.2	11.3 21.8 18 5	0.838	2.9^{b} (missing α) 10.02(7)	+0.2	0.168 0.565 0.326	225 ^a 191 137	-0.1 -0.2 -0.5						
4 6	243 243	11.5 7.4	20.7 36.4	0.427 0.676	9.97(7) 9.91(9)	+0.7 +0.7	0.072 0.007	230 ^d 150	-0.1 + 0.2						
5 2 4	243 250 250	11.5 12.1 11.8	34.4 28.2 21.1	0.083 0.188 0.930	9.92(8) 9.93(8) 9.9(6) ^a	+0.1 +0.7	0.028 0.130 0.069	221 205 ^d 155	$^{+0.6}_{+0.1}$ $^{-0.6}$						
3	250 250	11.2 11.7	26.6 29.5	0.391 0.823	9.94(7) 9.87(9)	$^{+0.2}_{+0.4}$	0.389 0.063	221 ^d 194	-0.3 -1.8						
2	257	11.0 ²⁸⁷ 1	21.2 .14	4.468	^{10.05(19)} ²⁸⁷ 114		0.123	^{199²} ²⁸³ 112	+0.1		²⁷⁹ 110				
Strip 3	E _L (MeV) 257	E _{ER} (MeV) 12.4	P _{ER} (mm) 17.6	δt _{ER-α} (s) 1.499	E _α (MeV) 10.03(7)	$\delta P_{ER-\alpha}$ (mm) +0.6	$\delta t_{\alpha-\alpha}$ (s) 5.457 ²⁴⁵	E_{α} (MeV) 9.54(7) Cm+ ⁴⁸ Ca	$\delta P_{\text{ER-}lpha}$ (mm) +0.6	$\delta t_{\alpha-SF}$ (s) 0.319	$\begin{array}{c} E_{SF} \\ (MeV) \\ \textbf{206}^{d} \end{array}$	$\begin{array}{c} \delta P_{\text{ER-SF}} \\ (\text{mm}) \\ 0.0 \end{array}$			
		²⁹¹ 1	16		²⁹¹ 116			²⁸⁷ 114			²⁸³ 112			²⁷⁹ 110	
Strip 3 1	E _L (MeV) 243 243	E _{ER} (MeV) 13.2 13.4	P_{ER} (mm) 36.4 23.5 $^{290}116$	$ \begin{aligned} \delta t_{\text{ER-}\alpha} \\ (\text{ms}) \\ 6.02 \\ 12.3 \end{aligned} $	$ E_{\alpha} (MeV) 10.75(31)^{a} 10.74(7) 290116 $	$\delta P_{ER-\alpha}$ (mm) -0.1	$\delta t_{\alpha-\alpha}$ (s) 0.898 2.273	$ E_{\alpha} (MeV) 10.08(7) 10.01(7) 2^{286}114$	$\begin{array}{c} \delta \mathbb{P}_{\text{ER-}\alpha} \\ (\text{mm}) \\ 0.0 \\ 0.0 \end{array}$	$\delta t_{\alpha-\alpha}$ (s) 12.57 8.303	E_{α} (MeV) 9.55(7) 9.52(7) $^{282}112$	$\begin{array}{c} \delta P_{\text{ER-}\alpha} \\ (\text{mm}) \\ -0.3 \\ -0.3 \end{array}$	$\delta t_{\alpha-SF}$ (s) 0.687 0.256	E _{SF} (MeV) 205 ^d 177	δP _{ER-SF} (mm) +0.1 -2.2
Strip 2 2	E _L (MeV) 243 243	E _{ER} (MeV) 12.7	P _{ER} (mm) 30.5 32.3	$\delta t_{\text{ER-}\alpha}$ (ms) 0.233	E_{α} (MeV) 10.88(8) (missing α)	$\delta P_{ER-\alpha}$ (mm) -0.9	$\delta t_{\alpha - \alpha/SF}$ (ms) 328 914	$ E_{\alpha/SF} (MeV) 193d 176 $	$\delta P_{\text{ER-}\alpha/\text{SF}}$ (mm) -0.5 -0.1	$\delta t_{\alpha-SF}$ (ms)	E _{SF} (MeV)	δP _{ER-SF} (mm)			
2	243	11.9	25.5		(missing α)		505	$10.03(31)^{a}$	-0.1	1.448	169	-0.6			

TABLE II. Observed decay chains produced in the described reactions. Bolded events were registered in beam-off period. The α -particle energy errors are shown in parentheses.

^aEscaped α particle registered by side detector only.

^bEscaped α particle registered by focal-plane detector without position signal because of low energy deposited.

 $^{c}\alpha$ particle registered by both focal-plane detector and side detector.

^dFission event registered by both focal-plane detector and side detector.

FIG. 1. Excitation functions for the $3n (\Box)$, $4n (\odot)$, and $5n (\mathbf{\nabla})$ evaporation channels from the complete-fusion reaction ²⁴⁴Pu + ⁴⁸Ca. The Bass barrier [8] is shown by an arrow. Lines show the results of calculations [9]. Error bars correspond to statistical uncertainties.

relationship of the decay energy, Q_{α} , and the half-life, T_{α} , for Z=114 gives evidence for the observation of unhindered α transitions that are typical for the decay of even-even nuclides (see Table III). Decay energies of the mother nuclei in these two cases differ by only 0.1 MeV. If we consider only the decay properties of the Z=114 species themselves, there

is insufficient evidence to identify more than one nuclide from the experimental data.

However, the decay properties of the daughter nuclei differ considerably. In the longer chains (α - α -SF), the daughter nucleus undergoes α decay in all 8 cases with $T_{\alpha}=34^{+17}_{-9}$ s. In the shorter chains (α -SF), the daughter nucleus decays in all 12 cases by spontaneous fission with $T_{\rm SF}=0.098^{+0.041}_{-0.023}$ s. This difference in T_{α} and $T_{\rm SF}$ lies far beyond statistical uncertainties and can only be explained by the fact that the two observed types of decay chains originate from two neighboring isotopes of element 114 if one does not assume SF decays from isomeric states.

Finally, at the maximum beam energy of 257 MeV, we detected a single example of a new type of decay chain, not observed at lower energies. This chain includes two sequential α particles with energies of 10.03 MeV and 9.54 MeV and ends in SF, with all decays detected in a time interval of about ten seconds (see the third section of Table II and Fig. 1).

Although the α decay energy of the mother nucleus in this new decay chain is similar to those observed in the two previously considered chains (a difference of ~0.2 MeV and ~0.1 MeV, respectively), the daughter nucleus in this chain differs in decay energy as well as in half-life. Assuming that this chain belongs to the decay of another new nucleus, we arrive at the conclusion that in the present ²⁴⁴Pu+⁴⁸Ca ex-

FIG. 2. α -particle (top panel) and sum fission-fragment (bottom panel) energy spectra of events in correlated decay chains originating from parent nuclei ²⁹³116 (α energies from [2]), ²⁸⁹114 (a) and ²⁸⁸114 (b). The sum fission-fragment energy spectrum of ²⁵²No is shown for comparison. In the top panel, the α -particle energy resolution is shown by ΔE_{α} .

Isotope	No. observed	Decay mode	Half-life	Expected half-life	E_{α} (MeV)
²⁹³ 116	3	α	53_{-19}^{+62} ms	80 ms	10.53±0.06
²⁸⁹ 114	8	α	$2.7^{+1.4}_{-0.7}$ s	2 s	9.82 ± 0.06
²⁸⁵ 112	8	α	34_{-9}^{+17} s	50 s	9.16 ± 0.06
²⁸¹ 110	8	SF	$9.6^{+5.0}_{-2.5}$ s		
²⁸⁸ 114	11	α	$0.63^{+0.27}_{-0.14}$ s	0.8 s	9.95 ± 0.08
²⁸⁴ 112	11	SF	98^{+41}_{-23} ms		
²⁹¹ 116	2	α	$6.3^{+11.6}_{-2.5}$ ms	20 ms	10.74 ± 0.07
²⁸⁷ 114	3	α	$1.1^{+1.3}_{-0.4}$ s	0.5 s	10.04 ± 0.07
²⁸³ 112	3	α	$6.1^{+7.2}_{-2.2}$ s	3 s	9.54 ± 0.07
²⁷⁹ 110	3	SF	$0.29^{+0.35}_{-0.10}$ s		
²⁹⁰ 116	2	α	15^{+26}_{-6} ms	10 ms	10.85 ± 0.08
²⁸⁶ 114	2	α/SF	$0.29^{+0.54}_{-0.11}$ s	0.5 s	10.03 ± 0.31
²⁸² 112	1	SF	$1.0^{+4.8}_{-0.5}$ ms		

TABLE III. Decay properties of nuclei produced in this work and [1-3].

periment, we have observed three isotopes of element 114 with consecutive neutron numbers.

Based on the decay properties of nuclei in the observed decay chains and dependence of their yields on the bombarding energy, we should assign the shorter (α -SF) chain to the decay of the even-even nuclide ²⁸⁸114 produced via the 4n-evaporation channel with a maximum cross section of \sim 5 pb. The two different (α - α -SF) chains should be assigned to the decay of neighboring even-odd isotopes of element 114 produced in the 3n- and 5n-evaporation channels with cross sections of \sim 2 pb and \sim 1 pb, respectively. Note, in this interpretation of the data, the previously observed α decay of the parent nuclei discovered in the reactions ²⁴⁴Pu + ⁴⁸Ca [1] and ²⁴⁸Cm+ ⁴⁸Ca [2] originated from the isotopes ²⁸⁹114 and ²⁹³116.

B. Synthesis of Z=116 nuclei in the reaction ²⁴⁵Cm+⁴⁸Ca

This experiment was designed to investigate the radioactive properties of the isotopes of element 116, the α -decay daughters of Z=118 isotopes produced in the reaction ²⁴⁹Cf+⁴⁸Ca [3].

The excitation energy of the compound nucleus at the Coulomb barrier of the ²⁴⁹Cf+⁴⁸Ca reaction is about 6.3 MeV lower than that of the reaction ²⁴⁴Pu+⁴⁸Ca. The maximum yield of Z=118 nuclides is expected in either the 2*n*- or 3*n*-evaporation channel. Similarly, the minimum excitation energy of ²⁹³116 in the ²⁴⁵Cm+⁴⁸Ca reaction is about 4.0 MeV lower than that of ²⁹²114 formed in the reaction ²⁴⁴Pu+⁴⁸Ca and thus here evaporation of two or three neutrons looks to be most probable too. Therefore, for the reaction ²⁴⁵Cm+⁴⁸Ca, we chose a lab-frame beam energy of 243 MeV in the middle of the target ($E^*=30.9-35.0$ MeV) (see Table I). At this beam energy, the production of isotopes ^{290,291}116 is expected with high probability.

In this experiment the beam was switched off after a recoil signal was followed by an α -like signal with an energy of 9.80 MeV $\leq E_{\alpha} \leq 11.13$ MeV in a time interval up to 4 s. The duration of the pause varied from 2 to 12 min. With an accumulated beam dose of 1.2×10^{19} , we detected five decay chains which fall into two decay types given in the fifth and fourth sections of Table II, respectively. The first type of decay represents a two- or three-step decay (ER- α -SF or ER- α - α -SF), lasting ~0.5 s. In two of the three decay chains of this type, the first α decay was not observed. The probability of detecting the preceding ER's as random events producing an accidental correlation was only about 2% in both cases. Despite the fact that the α particles were not observed in the ER-SF time interval, we tentatively assigned these events to the same ER- α -SF type, supposing that the α particles were not detected. In this experiment, we registered eight α particles by means of a detector with an 87% efficiency. Missing two α particles is not improbable. The second decay type included three sequential α decays and also ended in spontaneous fission. The total time interval between the ER and the SF for that decay type is about 10 s and is dominated by the last α decay that precedes the SF.

These new chains produced in the ²⁴⁵Cm+⁴⁸Ca experiment are different than the ER- α - α -SF decays of the nuclei synthesized in the reaction ²⁴⁸Cm+⁴⁸Ca [2]. Indeed, for the 10 s decay chain in the ²⁴⁵Cm experiments, the energy of the α particles emitted by the mother and daughter nuclei Z=116 and 114) are about 0.2 MeV larger and their halflives are smaller than that observed for more neutron-rich isotopes of elements 116 and 114. An even stronger difference is observed in the decay of granddaughter nuclei (Z=112), where the α particle energies differ by ~0.4 MeV and the difference in half-life increases accordingly. For the 0.5 s decay chain in the ²⁴⁵Cm experiments, the α particle energies of the mother and daughter nuclei (Z=116 and 114) are about 0.3 MeV and ~ 0.2 MeV larger and the decay modes and half-lives of granddaughter nuclei (Z=112) are different ($T_{\rm SF} \sim 1$ ms and $T_{\alpha} = 34$ s, see Tables II and III).

The differences in decay properties of the daughter nuclei (Z=114) are also observed when comparing data from the ²⁴⁵Cm+⁴⁸Ca reaction with the short (ER- α -SF) chain that we have assigned to the decay of the even-even nuclide ²⁸⁸114, produced via 4n-evaporation in the reaction ²⁴⁴Pu

FIG. 3. Time sequences in selected decay chains observed in the ${}^{245}Cm + {}^{48}Ca$ (a) and ${}^{244}Pu + {}^{48}Ca$ (at 257 MeV) (b) reactions. Measured energies, time intervals and positions of the observed decay events are shown. Energies of SF events detected by both the focal-plane detector and side detectors are shown in brackets.

+⁴⁸Ca. The α decay energies of the daughters (Z=114) differ by ~0.1 MeV and the half-lives of the granddaughters (Z =112) are different. The isotope ²⁸⁴112 decays via SF with a half-life of ~98 ms, whereas the granddaughter nucleus of the ²⁴⁵Cm+⁴⁸Ca reaction products decays via α decay with a half-life of ~6 s (10 s chain) or via SF with $T_{\rm SF}$ ~1 ms (0.5 s chain). Thus, the decay chains produced in the reaction ²⁴⁵Cm+⁴⁸Ca cannot originate from ²⁹³116 or ²⁹²116 (0*n*- or 1*n*-evaporation channels).

However, when one compares the decay energies and half-lives of the daughter nuclei in the ER- α - α -SF decay chains observed in ²⁴⁵Cm+⁴⁸Ca reaction with the properties of the single chain observed in the ²⁴⁴Pu+⁴⁸Ca reaction at maximum beam energy (257 MeV, $E^* \approx 53$ MeV), which was assigned to the decay of ²⁸⁷114, there is excellent agreement (see Fig. 3). As a result, the longer ER- α - α -SF chains observed in the ²⁴⁵Cm+⁴⁸Ca reaction must arise from the decay of $^{291}116$ produced via the 2*n*-evaporation channel. Then, the shorter chains should be assigned to the decay of even-even ²⁹⁰116, the product of 3*n*-evaporation. The energies of the first α decay in the short (0.5 s) and long (10 s) chains differ by just 0.1 MeV and the energies of the second α decay in both chains are close to each other. However, the correlation times of the third α decay and SF decay time in the short (ER- α - α -SF) chain differ substantially (T_{α} =6 s, $T_{\rm SF}$ =1 ms). For the daughter nucleus ²⁸⁶114, in one decay chain we observed α decay and SF was registered in two other cases. The α decay of this isotope was not observed in the decay chain originating from ²⁹⁴118 [3].

IV. DISCUSSION

In the present work, we measured, for the first time, the production cross sections of the ER's produced in the reaction 244 Pu+ 48 Ca at three 48 Ca beam energies: 243 MeV, 250 MeV, and 257 MeV, which correspond to the compound nucleus 292 114 with E^* =41.0 MeV, 46.9 MeV, and 52.6 MeV, respectively. Previous experiments [1] explored

the products of this reaction at lower beam and excitation energies (E^* =31.4 MeV and 35.2 MeV).

At $E^*=41$ MeV and 47 MeV, three chains of sequential ER- α - α -SF decays were observed. These chains are identical to those detected in previous ²⁴⁴Pu+⁴⁸Ca experiments at 236 MeV ($E^*=35$ MeV) and to those produced as decay products of the Z=116 nucleus observed in the ²⁴⁸Cm +⁴⁸Ca reaction [2]. The maximum yield of this nuclide, ²⁸⁹114, is observed at $E^*=41$ MeV with a peak production cross section of $1.7^{+2.5}_{-1.1}$ pb.

At $E^*=41$ MeV, 47 and 53 MeV, we observed 12 events of the decay of a new nuclide that undergoes sequential ER- α -SF decay over the span of about 1 second. The maximum yield of this nuclide, ²⁸⁸114, corresponds to $E^* \approx 43$ MeV and a peak production cross section of $5.3^{+3.6}_{-2.1}$ pb.

At the highest excitation energy of 53 MeV, another new nuclide undergoing sequential ER- α - α -SF decay was observed. The time interval between the implantation of the mother nucleus in the detector and the SF of the granddaughter isotope was about 10 seconds. The yield of this nuclide, ²⁸⁷114, at E^* =53 MeV corresponds to a production cross section of $1.1^{+2.6}_{-0.9}$ pb.

The difference in nuclear properties expressed in the decays of daughter nuclei produced in these experiments calls for assigning the different decay chain types to different parent isotopes produced via 3n-, 4n-, and 5n-evaporation channels. From the viewpoint of decay characteristics of the Z=114 nuclei, the chains of the two ER- α - α -SF and one ER $-\alpha$ -SF types could be considered as both originating from the even-even nuclide ²⁸⁸114 produced in 4*n*-evaporation channel. In the three different chains, the α -decay energies of the mother nuclei (Z=114) are 9.82-10.04 MeV and the halflives are 0.63-2.7 s. These α -decay energies and half-lives are quite similar. However, the decay for the daughter nuclei (Z=112) from the three chains varies greatly. In two of the chains they undergo α decay with energies of 9.54 and 9.16 MeV with half-lives of 6 and 34 s, respectively. The daughter from the third chain decays via SF with a 98 ms half-life. These varying daughter decay properties lead to the assignment of these three chains to three distinct mother nuclei, ²⁸⁷114, ²⁸⁸114, and ²⁸⁹114.

The measured excitation functions for producing of these nuclei completely corroborate such assignment. Indeed, the isotope ²⁸⁹114 was observed at lower excitation energies $E^*=35$ MeV, 41, and 47 MeV, the decay chains originating from ²⁸⁸114 were produced at higher energies, $E^*=41$ MeV, 47, and 53 MeV. The excitation functions measured for both ²⁸⁹114 and ²⁸⁸114 nuclei are characteristic in energy location, shape and magnitude of the products of neutron evaporation from the excited ²⁹²114 compound nucleus [5]. Finally, the isotope ²⁸⁷114 was observed only at the highest excitation energy of 53 MeV.

In the ²⁴⁵Cm+⁴⁸Ca reaction, we synthesized two new isotopes of element 116 that undergo sequential α decays terminated by spontaneous fission. The properties of the daughter nucleus of one of the element 116 isotopes produced in the ²⁴⁵Cm+⁴⁸Ca reaction (two events) essentially reproduces the characteristics of the 10-s (ER- α - α -SF) chain arising in the ²⁴⁴Pu+⁴⁸Ca reaction that we assign to the decay of isotope ²⁸⁷114. Therefore, the longer decay chains (ER- α - α - α -SF) are assigned to the decay of ²⁹¹116 produced in the 2*n*-evaporation channel of the ²⁴⁵Cm+⁴⁸Ca reaction. Then, the shorter three chains should be assigned to the decay of even-even ²⁹⁰116, the product of 3*n*-evaporation.

The α particle spectra observed in these experiments from the decay of the nuclei with Z=116 and 114 are characterized by well-defined transition energies. They follow the relationship between the probability and energy of α -decay (Viola-Seaborg formula) that was determined from 65 eveneven nuclei with Z>82 and N>126, for which T_{α} and Q_{α} values have been measured. This means that the observed transitions are as unhindered for the even-Z isotopes with odd mass numbers as they are for isotopes with even mass numbers. In particular, both these facts, i.e., the registration of unhindered decays and unique α -particle energies for odd isotopes produced at only one bombarding energy in our previous experiments ²⁴⁴Pu+⁴⁸Ca (two events) [1] and ²⁴⁸Cm +⁴⁸Ca (three events) [2] have led to their assignment to the even-even isotopes. The decay properties of nuclei produced in present experiments are given in Table III. The expected half-lives corresponding to the measured α -particle energies for the given isotopes, calculated from the Viola-Seaborg systematics, are shown in separate column behind the measured values.

The α -decay energies of the synthesized nuclei are given in Fig. 4 together with the available values of Q_{α} for the known isotopes with even $Z \ge 100$ and theoretical values [10,11]. Radioactive properties of isotopes with Z=112, 114, and 116 are in qualitative agreement with the macromicroscopic model calculations that predict the nuclear shapes to be close to spherical in this domain.

Despite expectations, all of the observed ER's are produced at beam energies exceeding the Coulomb barrier for the ²⁴⁴Pu+⁴⁸Ca reaction (B_{Bass} =233 MeV, E^* =32.9 MeV). In contrast to the well-studied reactions ^{206,208}Pb+⁴⁸Ca that are used in many model calculations, the ²⁴⁴Pu+⁴⁸Ca *xn*-evaporation excitation functions are shifted to higher energies. The highest yield is observed at $E^* \approx 41$ MeV, close to expectations for the 4*n*-channel maximum. This points to

FIG. 4. α -decay energy vs neutron number for isotopes of even-Z elements with Z \ge 100 [solid circles (•), even-even isotopes; open circles (\bigcirc), even-odd isotopes] [4,12,13]. Data at $N \ge$ 169 are from [1,2] and the present work. Solid lines show theoretical Q_{α} values [10,11] for even Z=100-116 elements.

a considerable decrease in the compound nucleus formation cross-section around the Coulomb barrier. Such an effect is not observed in the fusion of Pb target nuclei with ⁴⁸Ca and heavier projectiles (the cold fusion reactions). This may be associated with the orientation of the deformed target nucleus during its interaction with the approaching ⁴⁸Ca projectile. If the major contribution to the formation of the compound nucleus is associated with the compact system in the entrance channel (the minimum distance between the centers of interacting nuclei), then as shown in [14] and in experiments with light compound nuclei [15], the fusion threshold should increase and the number of neutrons emitted from a more heated nucleus should increase accordingly.

In the ²⁴⁵Cm+⁴⁸Ca reaction, where the mass defect decreases the minimum excitation energy of the compound nucleus ²⁹³116 by some 4 MeV compared with ²⁹²114 produced in the ²⁴⁴Pu+⁴⁸Ca reaction, the 2*n*- and 3*n*-evaporation channels are observed at energies of E^* = 30.9–35.0 MeV with cross sections of about 0.9 pb and 1.3 pb, respectively. It is evident that the problems of fusion of the deformed nuclei with massive ions like ⁴⁸Ca requires further experimental investigation.

Based on the measured production cross sections of new nuclides, their synthesis in the cross bombardments, as well as comparison of their decay properties with experimental systematics and theoretical predictions, it is most reasonable to assign observed nuclei to the products of the complete fusion reactions followed by neutron evaporation. For the trans-actinide compound nuclei, the αxn or pxn reactions were not previously observed in the reactions induced by heavy projectiles with $A \ge 40$ (see, e.g., [4,16] and references therein). From our experiments ${}^{206}\text{Pb}({}^{48}\text{Ca}, 1-4n){}^{250-253}\text{No}$ [17] we set the upper cross section limits for the ($\alpha 2n + a3n$) reactions to be lower by a factor of 33 than that of the 2n evaporation channel at its maximum and by factors of 6 and 3 at $E^* = 20$ MeV and 40 MeV, respectively. Moreover,

the separator transmission for such reaction products is about an order of magnitude lower compared with the products of *xn* evaporation. Besides, the assignment of the new synthesized nuclei to the αxn - or *pxn*-reaction products would result in noticeable excess of experimental Q_{α} values over the theoretical ones and in considerable deviations from the experimental T_{α} vs. Q_{α} systematics.

From the theoretical consideration, the ⁴⁸Ca-induced reactions with actinide nuclei essentially differ from the coldfusion one. In the latter case, the production of residual nuclei is largely determined by the decrease of compound nucleus formation probability with increasing of projectile mass thus resulting in gradual reduction of their yields. For the more asymmetrical ⁴⁸Ca-induced reactions with actinide targets, the probability of compound nucleus formation is substantially higher but the yields of ER's largely depend on their survival probability during the deexcitation of hot nuclei. The recent calculations [9] well reproduce the measured cross sections for the reactions of ²⁴⁴Pu, ²⁴³Am [18], ^{245,248}Cm [2], and ²⁴⁹Cf [3] with ⁴⁸Ca. However, the calculations of cross sections for the production of superheavy nuclei in these reactions are rather complex and uncertain because of lack of adequate microscopic model for description of compound nucleus formation process and precise parameters of such nuclei, for instance their fission barriers, nucleon separation energies, and nuclear deformation parameters. In this respect, further experiments aimed at the investigations of chemical properties and precise mass measurements of descendant nuclei in the observed decay chains as well as synthesis of heavy nuclei decaying to the known nuclides in the ⁴⁸Ca induced reactions with actinide targets are highly desirable.

In view of these interpretations, the data of our first experiments [19] performed at low excitation energies ($E^* \leq 35 \text{ MeV}$) need further analysis. In the present ²⁴⁴Pu +⁴⁸Ca experiment, at $E^*=41 \text{ MeV}$, 47 and 53 MeV and a total beam dose of 1.0×10^{19} as well as in the previous experiment [1] at $E^*=35 \text{ MeV}$ with a beam dose 1.0×10^{19} , we did not observe the long decay chain similar to that which we had detected in our first experiment [19] at $E^*=35 \text{ MeV}$, which we interpreted as a *candidate* for the decay of ²⁸⁹114. The cross section corresponding to this single event was es-

timated to be about 0.2 pb at $E^*=35$ MeV. In view of the recent results, one could propose that this chain originates from the decay of the neighboring isotope ²⁹⁰114 produced via 2*n*-evaporation. Indeed, the energy of the first α particle (9.71 MeV) is about 0.1 MeV lower than that of the isotope ²⁸⁹114 assigned from our most recent work, and the energies of the next two α particles (8.67 MeV and 8.83 MeV) do not contradict what is expected for ²⁸⁶112 and ²⁸²110. Yet in this case, one has to suppose a considerable increase in stability against decay by SF of ²⁸⁶112 compared with its lighter even-even neighbor ²⁸⁴112 ($T_{\rm SF} \approx 0.1$ s).

On the other hand, some calculations [20] show that such a long chain can be assigned to a rare decay branch of the even-odd nuclide ²⁸⁹114. This rare decay starts from the isomeric first excited state rather than from the ground state, and goes through low-lying levels in the daughter nuclei in accordance with the selection rules associated with the appropriate quantum numbers.

In the present experiments, we did not observe the 3 or 5 min ER- α -SF decay chain reported in the ²⁴²Pu+⁴⁸Ca reaction studied with the VASSILISSA separator and assigned to ²⁸⁷114 [21]. In order to resolve the remaining contradictions concerning properties of ²⁸⁷114 and ²⁸³112 we plan to study excitation functions for their production in the reactions ²⁴²Pu+⁴⁸Ca and ²³⁸U+⁴⁸Ca in the nearest future.

ACKNOWLEDGMENTS

This work has been performed with the support of the Russian Ministry of Atomic Energy and grants of RFBR, Nos. 01-02-16486, 03-02-06236 and 04-02-17186. The ²⁴⁴Pu target material was provided by the U.S. DOE through ORNL. The ²⁴⁵Cm target material was provided by RFNC-VNIIEF, Sarov. Much of the support for the LLNL authors was provided through the U.S. DOE under Contract No. W-7405-Eng-48. The LLNL authors would like to thank their Russian co-authors for hosting them during their visits to participate in the ²⁴⁴Pu+⁴⁸Ca and ²⁴⁵Cm+⁴⁸Ca experiments, and for the lively discussions regarding the interpretation of the data. These studies were performed in the framework of the Russian Federation/U.S. Joint Coordinating Committee for Research on Fundamental Properties of Matter.

- Yu. Ts. Oganessian *et al.*, Phys. Rev. C **62**, 041604(R) (2000);
 Phys. At. Nucl. **63**, 1679 (2000).
- Yu. Ts. Oganessian *et al.*, Phys. Rev. C **63**, 011301(R) (2001);
 Phys. At. Nucl. **64**, 1349 (2001); Eur. Phys. J. A **15**, 201 (2002).
- [3] Yu. Ts. Oganessian *et al.*, JINR Communication D7-2002-287, 2002; Lawrence Livermore National Laboratory Report, UCRL-ID-151619, 2003.
- [4] S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000); S. Hofmann *et al.*, Eur. Phys. J. A 14, 147 (2002).
- [5] R. C. Barber et al., Prog. Part. Nucl. Phys. 29, 453 (1992).
- [6] Yu. Ts. Oganessian et al., Proceedings of the Fourth International Conference on Dynamical Aspects of Nuclear Fission,

Častá-Papiernička, Slovak Republic, 1998 (World Scientific, Singapore, 2000), p. 334; K. Subotic *et al.*, Nucl. Instrum. Methods Phys. Res. A **481**, 71 (2002).

- [7] W. D. Myers and W. J. Swiatecki, Nucl. Phys. A601, 141 (1996).
- [8] R. Bass, Proceedings of the Symposium on Deep Inelastic and Fusion Reactions with Heavy Ions, West Berlin, 1979, edited by W. von Oertzen, Lecture Notes in Physics Vol. 117 (Springer-Verlag, Berlin, 1980), p. 281.
- [9] V. I. Zagrebaev, M. G. Itkis, and Yu. Ts. Oganessian, Phys. At. Nucl. 66, 1033 (2003); V. I. Zagrebaev *et al.*, Nucl. Phys. A734, 164c (2004).
- [10] R. Smolańczuk and A. Sobiczewski, Proceedings of XV

Nuclear Physics Divisional Conference "Low Energy Nuclear Dynamics," St. Petersburg, Russia (World Scientific, Singapore, 1995), p. 313.

- [11] I. Muntian *et al.*, Acta Phys. Pol. B **34**, 2073 (2003); Phys. At. Nucl. **66**, 1015 (2003).
- [12] Ch. E. Düllmann et al., Nature (London) 418, 859 (2002).
- [13] Table of Isotopes, 8th ed., edited by R. B. Firestone and V. S. Shirley (Wiley, New York, 1996).
- [14] P. Möller and J. R. Nix, Proceedings of the Tours Symposium on Nuclear Physics III, Tours, France, 1997, edited by M. Arnould, M. Lewitowicz, Yu. Ts. Oganessian, M. Ohta, H. Utsunomiya, and I. Wada, AIP Conf. Proc. No. 425 (AIP, New York, 1998), p. 75.
- [15] K. Nishio et al., J. Nucl Sci. Tech., Supplement 3, Proceedings of the Actinides 2001 International Conference, Hayama, Japan, 2001 (Atomic Energy Society of Japan, 2002), p. 26.
- [16] Yu. Ts. Oganessian *et al.*, Radiochim. Acta **37**, 113 (1984); Yu.
 A. Lazarev *et al.*, Nucl. Phys. **A580**, 113 (1994).
- [17] Yu. Ts. Oganessian et al., Phys. Rev. C 64, 054606 (2001).
- [18] Yu. Ts. Oganessian et al., Phys. Rev. C 69, 021601(R) (2004).
- [19] Yu. Ts. Oganessian et al., Phys. Rev. Lett. 83, 3154 (1999).
- [20] S. Ćwiok, W. Nazarewicz, and P. H. Heenen, Phys. Rev. Lett.
 83, 1108 (1999); J. F. Berger, D. Hirata, and M. Girod, Acta Phys. Pol. B 34, 1909 (2003).
- [21] Yu. Ts. Oganessian *et al.*, Nature (London) 400, 242 (1999);
 Eur. Phys. J. A 5, 63 (1999); 19, 3 (2004).