SEARCH FOR LIGHT RADIATION IN THE DECAY OF THE 229Th ISOMER WITH ANOMALOUSLY LOW EXCITATION ENERGY

Yu.P. Gangrsky, F.F. Karpeshin1, G.V. Mishinsky, S.G. Zemlyanoi, V.I. Zhemenik2

1 Institute of Physic, St.-Petersburg University, Russia
2 INR NAS of Ukraine, Kyiv, Ukraine

The 229Th nuclide possesses a unique isomeric level positioned at 3.5±1 eV above the ground nuclear state [1] and may possibly emit gamma rays in the ultraviolet [2,3]. Thorium-229 is typically generated by the alpha decay of 233U, wherein 2% of the thorium daughter decays via the metastable isomeric level.

In some experiments, the spontaneous emission of ultraviolet light radiation was observed after alpha decay of 238U, but this was not confirmed later.

We have performed the experiments on the search for light radiation in the decay of the anomalously low energy isomer in 229Th.

This experiment was performed at the microtron MT-25 in FLNR JINR. The isomeric state was excited in the inelastic γ-rays scattering using bremsstrahlung with the cutoff energy of 8.2 MeV. A PEU-100 photomultiplier having maximal sensitivity of the photocathode at the wavelength 350 nm (3.6 eV) was used for the detection of ultraviolet radiation.

The photofission fragments of 229Th were detected simultaneously using solid state track detectors - mylar films.

Delayed light radiation above the background in the energy range of 2.3 – 6.3 eV and in the time interval 2 min – 10 hours was not observed in the experiment. The ratio of photon events to fission-fragment tracks is less than 5. A correction for the different thresholds for the fission and gamma inelastic scattering increases this limit up to 200. This means that either the half-life of the isomeric state has a very small value (<1 min) or that its energy falls outside the proposed limits.

REFERENCES